Fundamental Algorithms 2

Exercise 1 (Real Complexity)

Suppose HomeComputer is a machine that can perform 10^{9} operations per second. Consider that we have five different algorithms for a specific problem. For each algorithm i, we know the number of operations $T_{i}(n)$ it will perform on a problem of size n :

$$
\begin{aligned}
& T_{1}(n)=6000000 \cdot n \in O(n) \\
& T_{2}(n)=60000 \cdot n \ln n \in O(n \ln n) \\
& T_{3}(n)=0.003 \cdot n^{2} \in O\left(n^{2}\right) \\
& T_{4}(n)=10^{-6} \cdot n^{3} \in O\left(n^{3}\right) \\
& T_{5}(n)=10^{-18} \cdot 2^{n} \in O\left(2^{n}\right)
\end{aligned}
$$

For each algorithm compute the size $n_{\max }$ of the largest problem the respective algorithm can solve within 1 second (1 minute, 1 hour, ...). Enter the maximal problem sizes into the following table:

	1 second	1 minute	1 hour	1 day	1 month (30 d)	1 year (365d)
T_{1}						
T_{2}						
T_{3}						
T_{4}						
T_{5}						

Exercise 2 (MergeSort)

Compute the number of comparisons between array elements that will be performed by MERGESORT on an array of size $n=2^{k}, k \in \mathbb{N}$ in the best case, i.e., compute this number exactly.

Exercise 3 (Sorting)

Prove or disprove the following statement: If we sort each row of a matrix, and, after that, sort each column of the matrix, the rows of the matrix will still be sorted afterwards.

